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Abstract. We discuss the predictability of a system that drives a chaotic system with a positive
Lyapunov exponent. In the absence of feedback, the driver is regular and fully predictable. With
a small feedback of strengthε, the state of the driver can be predicted up to a time diverging
with a power ofε−1, although the total system is strongly chaotic. The exponential amplification
of the uncertainty on the initial conditions of the driver coexists with very long predictability
times as illustrated in a model of coupled maps and of three point vortices in a disc.

It is commonly believed that a sensible dependence on an initial condition makes forecasting
impossible even in systems with a few degrees of freedom. This is the so-called butterfly
effect discovered by Lorenz in a numerical simulation of a model of convection with three
degrees of freedom (Lorenz 1963). Using his words, ‘A butterfly moving its wings over
Brazil might cause the formation of a tornado in Texas’.

In general, a dynamical system is considered chaotic when there is an exponential
amplification of an infinitesimal perturbationδ0 on the initial conditions, with a mean time
rate given by the inverse of the maximum Lyapunov exponentλ (Benettin et al 1976).
Indeed, such a deterministic system is expected to be predictable on timest � λ−1 and to
behave like a random system on larger times. The purpose of this paper is to show that there
exists a wide class of dynamical systems where a large value of the Lyapunov exponent
does not imply a short predictability time on a physically relevant part of the system. In
this respect, one can speak of strong chaosλ > 0 without a butterfly effect.

In particular, we discuss the predictability of a conservative system that drives a strongly
chaotic system with positive maximum Lyapunov exponentλ0. In the absence of feedback
the driving system is regular and completely predictable. A small feedback of strengthε

still allows us to predict the future of the driving system up to a very long predictability
time Tp that diverges withε. The Lyapunov exponent of the total system isλtot ≈ λ0, and
so there is a regime of strong chaos for allε values. The absence of the butterfly effect
stems from saturation effects in the evolution laws for the growth of an uncertainty on the
driven system.

To be explicit, let us consider a system with evolution given by two sets of equations

dξ

dt
= F(ξ) + εh(η) (1a)

dη

dt
= G(ξ, η) (1b)
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with ξ ∈ Rn andη ∈ Rm. The variablesη are thus driven by a subsystem represented by
the variablesξ , with a weak feedback of orderε. A typical physical example is given by an
asteroid moving in the gravitational field generated by two celestial bodies of much larger
mass such as Jupiter and the Sun (Sussman and Wisdom 1992). Usually the feedback is
neglected, and one considers the restricted three-body problem, i.e. theη variables passively
driven. However, a finer description should take into account even the influence of the
asteroid on the evolution of the other two bodies, i.e. an ‘active’ driving whereε 6= 0. This
situation appears in many other phenomena, such as the active advection of a contaminant
in a fluid, a simple example which will be discussed in this paper.

The main properties of the system in the absence of feedback are the following:
(i) the driver is an independent dynamical system that exhibits a regular evolution with

zero Lyapunov exponent;
(ii) the driven subsystem is chaotic with a positive maximum Lyapunov exponent, say

λ0. In other words, the behaviour of the driver (ξ variables) is completely predictable.
However, as soon asε 6= 0, one should consider the total system which is obviously

chaotic with a Lyapunov exponentλtot that, a small correction of orderε, is given by
the Lyapunov exponentλ0 of the chaotic driven subsystem. This means that there is an
exponential amplification of a small uncertainty on the knowledge of the initial conditions
even in the driver. This is an amazing result, since it is natural to expect that it is possible
to forecast the behaviour of the driver for very long times asε → 0. Actually, intuition
is correct while the Lyapunov analysis gives completely wrong hints on the predictability
problem contrary to what was commonly believed. The famous butterfly effect of Lorenz
seems not to forbid the possibility of predicting the future of a part of the system. The
paradox stems from saturation effects in the evolution for the growth of the uncertainty. To
fix notation and definitions, let us consider the evolution of the total system

dxi

dt
= fi(x) where x = (ξ, η) ∈ Rn+m . (2)

The uncertainty on its state is1(t) = x(t) − x′(t) wherex andx′ are trajectories starting
from close initial conditions, i.e.|x(0) − x′(0)| = δ0. In the limit δ0 → 0, 1 can be
confused with the tangent vectorz whose evolution equations are

dz

dt
= J (t)z where Jik(t) = dfi

dxj

∣∣∣∣
x(t)

. (3)

The maximum Lyapunov exponent is then defined as the exponential rate of the uncertainty
growth,

λ = lim
t→∞ lim

δ0→0

1

t
ln

( |1(t)|
δ0

)
= lim

t→∞
1

t
ln |z(t)| . (4)

It is worth stressing that the full equations for the evolution of an uncertainty are nonlinear:

d1

dt
= J (t)1 + O(12) (5)

so that the two limits in (4) cannot be interchanged.
The predictability of the system is defined in terms of the allowed maximal ignorance

on the state of the system, a tolerance parameter1max which must be fixed according to
the requirements of the observer. The predictability time is thus

Tp = sup
t

{t such that|1(t ′)| 6 1max for t ′ 6 t} . (6)
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If 1max � 1, equation (5) is well approximated by (3) and the predictability time can be
roughly identified with the inverse Lyapunov exponent, since

Tp ∼ 1

λ
ln

(
1max

δ0

)
(7)

and the dependence on the initial errorδ0 and on the tolerance parameter1max is only
logarithmic and can be safely ignored for many practical purposes.

Suppose we are now only interested in the uncertainty1(ξ) in the driver system. When
ε = 0, the Lyapunov exponent of the driverλξ = 0 so that it is fully predictable (we have
in general,T (ξ)

p ∼ δ
−β

0 , the exponentβ depending on the particular system) while the driven
system has a Lyapunov exponentλ0 > 0. However, for anyε 6= 0 the two subsystems are
coupled, and the global Lyapunov exponent is expected to be

λ = λ0 + O(ε) . (8)

A direct application of (7) would give

T (ξ)
p ∼ Tp ∼ 1

λ0
. (9)

One thus obtains a singular limit, limε→0 T
(ξ)

p (ε) 6= T
(ξ)

p (ε = 0). The troubles stem from
the identification between uncertainty1(t) and tangent vectorz(t), which is not correct on
long time scales.

It is convenient to illustrate the problem in a simpler context as the main qualitative
aspects of equations (1a) and (1b) can be reproduced considering only the feedback effect
in two coupled maps of the type

ξt+1 = Lξt + εh(ηt ) (10a)

ηt+1 = G(ηt ) (10b)

where the timet is an integer variable,ξ ∈ R2, h = (h1, h2) is a vector, function of the
variableη ∈ R1 whose evolution is ruled by a chaotic one-dimensional mapG, andL is
the linear operator corresponding to a rotation of an arbitrary angleθ ,

L =
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

When ε = 0, one is left with two independent systems, one of them regular and of
Hamiltonian type, the other fully chaotic.

These maps provide a simple, maybe the simplest, example of a system with two
different temporal regimes:

(i) short times whereδ0 exp(λ0t) � 1 so that it is correct to ignore the nonlinear terms
in (5), so that1 ∼ z;

(ii) long times where one should consider the full nonlinear equation (5) for the
uncertainty growth.

From the observer’s point of view, both these regimes might be interesting, according
to his particular requirements. If one is interested in forecasting the very fine details of the
systems, the tolerance threshold1max could be quite small, henceTp ∼ λ−1

0 . In general,
however, a system is considered unpredictable when the uncertainty is rather large (say
discrimination between sun and rain in meteorology) and regime (ii) is the relevant one.
In that case, nonlinear effects in (5) cannot be neglected and in order to give an analytical
estimate of the predictability time we can use a stochastic model of the deterministic
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equations. Indeed the chaotic feedback on the evolution of the ‘driver’ system can be
simulated by a random vectorw, i.e.

ξt+1 = Lξt + εwt . (11)

The uncertainty1(ξ)
t is then given by the difference of two trajectoriesξt andξ ′

t originated
by nearby initial conditions and evolves according to the stochastic map

1
(ξ)

t+1 = L1
(ξ)
t + εWt (12)

where Wt = w′
t − wt . For short timest � λ−1

0 |ln δ0| one cannot consider the ‘noises’
wt andw′

t as uncorrelated so that the uncertainty on the driver grows exponentially under
the influence on the deterministic chaos given by the feedback,|1(ξ)

t | ∼ |1t | ∼ exp(λt),
with λ = λ0 + O(ε). For long timest � λ−1

0 |ln δ0|, the random variables are practically
uncorrelated so that their differenceWt still acts as a noisy term. As a consequence the
growth of the uncertainty is diffusive, since the formal solution of (12) is

1
(ξ)
t = Lt

(
δ0 + ε

t∑
τ=0

L−τWτ

)
(13)

and noting thatLt is a unitary transformation, from (13) one can derive the bound

|1(ξ)
t | 6 ε

∣∣∣∣ t∑
τ=0

Wτ

∣∣∣∣ ∼ εt1/2 (14)

where we have used the estimate| ∑t
τ=0 Wτ | ∼ t1/2 given by standard arguments borrowed

from the central limit theorem. In conclusion, for our model maps (10a) and (10b), the
predictability time on the driver diverges like

T (ξ)
p ∼ ε−2 (15)

although there is a regime of strong chaos since the total Lyapunov exponentλ = λ0 +O(ε)

does not vanish with the strength of the feedbackε.
It is important to stress that the particular power of the diffusive law in a realistic

model can be different from that of a random walk, since the deterministic chaos of the
feedback could be better represented by random variables with appropriate correlations.
The qualitative behaviour exhibited by the stochastic model for the uncertainty growth
(exponential followed by a power law) can be tested in a direct numerical simulation of the
coupled maps (10a) and (10b), where we choose the linear vector function for the feedback,

h(η) = (η, η) (16a)

and the logistic map at the Ulam point for the driving system,

G(η) = 4η(1 − η) (16b)

with the Lyapunov exponentλ0 = ln 2. Figure 1 shows the behaviours of the uncertainty
|1(ξ)| for the driver, starting with an errorδ0 on the initial conditionη0 and no error on the
driver. At the beginning both|1(η)| and |1(ξ)| grow exponentially. However, the phase
space available to the variableη is finite, so that|1(η)| is bounded by a maximum value
1M ∼ O(1). It will be attained at the timet = t∗ ∼ λ−1

0 ln(1M/δ0), when the uncertainty
on the driver system is|1(ξ)| ∼ ε1M, and so much lower than the threshold. At larger
times t > t∗, the uncertainty on the driven system remains practically constant and|1(ξ)|
increases with a diffusive law of type (14) according to the mechanism described by the
stochastic map (12).
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Figure 1. Growth of the uncertainty|1(ξ)| of the driver system in the coupled maps (10a)
and (10b) as a function of timet , where the rotation angleθ = 0.820 99, the feedback strength
ε = 10−5 and the error on the initial condition of the driven system (10b) δ0 = 10−10. Broken
curve: exponential regime1(ξ)(t) = εδ0 exp(λ0t) whereλ0 = ln 2. Full line: 1(ξ)(t) = εt1/2.

We have also studied a more realistic model of two coupled standard maps in action-
angle variablesI andθ ,

I
(1)

t+1 = I
(1)
t − ε sin(θ(1)

t + θ
(2)
t )

θ
(1)

t+1 = θ
(1)
t + I

(1)

t+1

I
(2)

t+1 = I
(2)
t − K sin(θ(1)

t + θ
(2)
t )

θ
(2)

t+1 = θ
(2)
t + I

(2)

t+1

(17)

where K � ε is a control parameter of order unity, such that the system(I (2), θ (2)) is
chaotic whenε = 0. We do not discuss in detail the results for these coupled maps, since
they are qualitatively similar to those obtained for the simplified model (10).

We now consider an application to a physical phenomenon, the motion of an ensemble
of point vortices in a fluid. It is a classical problem in fluid mechanics, formally similar
to the planetary motion in a gravitational field. Both the systems are Hamiltonian with
long-range interactions. The main qualitative differences are that the Hamiltonian for point
vortices does not contain a kinetic term and the motion is confined on the two-dimensional
plane. The phase space for a collection ofN vortices thus has 2N dimensions, related to
the physical coordinates.

Dynamical properties of point vortex systems have been studied by several authors
interested in their chaotic motion and connection with two-dimensional turbulence (see Aref
1983 for a review). The Hamiltonian theory for vortex motion inside a bounded domain
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was developed many years ago (Lin 1941) for several boundaries. Here we are interested
in the motion in the unitary discD for which the Hamiltonian takes the form

H = − 1

4π

∑
i>j

0i0j log

[
r2
i + r2

j − 2rirj cosθij

1 + r2
i r2

j − 2rirj cosθij

]
+ 1

4π

N∑
i=1

02
i log(1 − r2

i ) (18)

where the0i represent the circulation of theith vortex of coordinatesxi = (xi =
ri cosθi, yi = ri sinθi) andθij = θi − θj . The canonical conjugated variable are the scaled
coordinates(0ixi, yi) and the phase space is thusN times the configuration spaceD. The
Hamiltonian (18) is invariant under rotations in the configuration space, and thus the angular
momentum is a second conserved quantity

L2 =
N∑

i=1

0i(x
2
i + y2

i ) . (19)

By general results of Hamiltonian mechanics, a system of two point vortices is always
integrable, but we should expect chaotic motion forN > 2 vortices.

In the following we will considerN = 3 vortices, two of them carrying fixed circulation
01 = 02 = 1 and representing the driver, which without feedback is integrable. The third
vortex, of circulation03 = ε, represents the driven system which now makes the total
system chaotic. In the limitε → 0 the third vortex becomes a passive particle (it is
passively transported by the flow generated by the two unit vortices) and does not influence
the integrable motion of the two vortices as for the three-body restricted problem in celestial
mechanics. The restricted system is still chaotic, but the uncertainty is confined to the
passive tracer, while the motion of the two vortices is, in general, quasi-periodic. This limit
is one of the simplest examples of chaotic advection in two-dimensional flow and it will be
studied in detail in another paper (Boffettaet al 1996).

For our particular problem of three vortices the Hamiltonian can be rewritten in the
following standard perturbation form:

H = H0(x1, x2) + εH1(x1, x2, x3) + ε2H2(x3) . (20)

The first termH0 describes the dynamics of the two unit vortices (and leads to integrable
motion forε = 0); the termH1 represents the interaction with the small vortex of circulation
ε and the last term is due to the interaction of the third vortex with its own image. The
O(ε) term is thus the perturbation to the integrable systemH0 and we are reduced to the
general framework described above if we identifyξ = (x1, x2) and η = x3. The only
difference is that now theη dynamics is not chaotic by itself, but chaoticity is induced by
the interaction with the integrable systemξ .

We now describe a typical simulation of error growth in the point vortex model which
reproduces the effects obtained with the coupled maps model. We fix the value of the
coupling constant (circulation of the third vortex)ε = 10−6 and the initial conditions for
the vortex positions are chosen in order to obtain chaotic motion with a global Lyapunov
exponentλ ∼ 0.041. The initial uncertainty on the coordinates of the small vortex is
1(η)(0) = 10−3 while we assume we know the initial position of the two large vortices with
a precision of1(ξ)(0) = 10−8. The saturation value for the uncertainty is proportional to
the disc radius, here1M ∼ 1.

We let the system evolve according to the Hamiltonian dynamics (18) for quite a long
time and we computed, at each time, the maximum value reached by the uncertainty (we
used the maximum because in this system uncertainty shows strong oscillations: this is a
memory of the quasi-periodic behaviour forε = 0). This represents the worst situation
for making predictions. The upper scatter plot in figure 2 shows the time evolution of the
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Figure 2. Uncertainty growth for the point vortex model. Cross: maximum of the uncertainty
1(η)(t) on the third vortex. Diamond: maximum error1(ξ) on the driving system of two
vortices. Dotted curve: exponential regime1(ξ)(t) ∼ exp(γ t) with γ = 0.064. Broken curve:
power-law regime1(ξ) ∼ εt1/α with α−1 = 0.88.

uncertainty for the driven system1(η)(t). We can recognize a short(t < 100) exponential
growth until the nonlinear effect becomes important. At large times(t > t∗ ∼ 300) the
uncertainty saturates to its maximum value1M. The lower scatter plot represents the
uncertainty for the driver system of two vortices,1(ξ)(t). We can easily recognize the two
expected limiting behaviours represented by the two curves. For small times, the error grows
exponentially,1(ξ)(t) ∼ εγ t whereγ ∼ 0.064 is close to the global Lyapunov exponent.
For long times, the power-law behaviour is recovered,1(ξ)(t) ∼ εt1/α with α−1 ∼ 0.88.

In conclusion, we must stress that all our results can be generalized in a straightforward
way to a weakly chaotic driver with a maximum Lyapunov exponentλd � λ0. In fact, the
driver might be either conservative or dissipative. The important point is that the dynamics
of the driver have a much longer characteristic time than the driven system so that, for
an observer interested in the predictability problem, the two systems can be practically
decoupled. The Lyapunov analysis, although mathematically correct, does not capture the
physically relevant features of the phenomenon, and the exponential dependence on initial
conditions does not affect the possibility of forecasting the future of the driver on a very
long time scale. This is still true in systems with many different time scales instead of only
two, such as fully developed turbulence, as suggested a long time ago on phenomenological
grounds by Lorenz (see Lorenz 1969, Leith and Kraichnan 1972, Lilly 1973). In this case
the inverse Lyapunov exponent is not related to the predictability time on the large length
scale motion (Aurellet al 1996).
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